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Activities Relevant to CIWRO Theme 2

Supercell (e.g., SVC) QLCS

* Ensemble Sensitivity Analysis
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Simulations of the Streamwise Vorticity Current (SVC)
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Streamwise vorticity (white shade) and 0,," (colored) [A. schueth, Texas Tech]



Simulating the SVC in CM1 - Past

Previous work (Schueth et al. 2021) took an in-
depth look at the dynamics driving the SVC

- Horizontal inflow acceleration was the
largest contributor to SVC vorticity

- Baroclinic vorticity was a close second in
vorticity generation

Unanswered questions: o R S
— Vorticity Tendency “HET O Vorticity Tendency
- How does the SVC affect the parent storm? b) | 1000

- Does the orientation of the SVC/FFCB
change the magnitude of the SVC or
downstream effects?

- Are there environmental conditions that

better support SVCs?
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Simulating the SVC in CM1 - Present

16 simulations exploring a wind shear parameter space to simulate different
conditions for the SVC

v-component wind [kt]

4 magnitudes of storm-relative inflow > different updraft strengths and inflow accelerations
4 angles of upper-level venting > different cold pool placements and boundary orientations
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Simulating the SVC in CM1 - Future

Solving the etfects ot the SVC : Time = 150-180 min

- Quantifying the effects hodograph structure .|
has on cold pool placement and boundary
location

- Backward parcel trajectories to quantify how
much air is originating in the SVC

- Forward parcel trajectories to quantify where
SVC air ends up

- Pressure decomposition to further illuminate
the SVCs role in low-level VPPGF

- Determine temporal linkage between updraft |
intensification, tornado formation, and SVC e s Y e
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Simulations of HSLC Quasi-Linear Convective Systems

Past Research

* McDonald and Weiss (2021) found stronger 0,, gradients near a tornado
in a HSLC QLCS, implications for baroclinic vort generation and low-

level updraft magnitude

* How important are cold pool characteristics for mesovortex
development in HSLC QLCS events?

Current Research

* Simulate HSLC QLCSs in CM1 and explore effects of cold pool

characteristics on MV and TLV generation and maintenance

* Look at effects of modifying 3-6 km shear vector magnitude
* Increased shear -> decreased cold pool temperatures (Coniglio et al.

20006)

* Impacts on baroclinic vorticity generation?
* Impacts on low-level updrafts (via convergence and/or RKW

concepts)?
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Simulations of HSLC Quasi-Linear Cgnvective Systems
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Model Set Up
* Input sounding with 500 | kgt SBCAPE (based on Sherburn and Parker 2019)
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* 06-km deep pseudo cold front as CI mechanism (Sherburn and Parker 2019) £
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* Example images from 10-m s 3-6 km shear (free slip) run
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Simulations of HSLC Quasi-Linear Convective Systems
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Ensemble Sensitivity Analysis (ESA)

. . AR ° 5 LAy o 70

* Linear regression between scalar o) Y e RS AL
response variable (R) and initial ‘
state variable (x,) over suite of

ensemble members

* How does prior atmospheric
state influence a specified
outcome?

* Sensitivity formulation:

Sensitivity of maximum reflectivity of dryline
0 ﬁ o RéiT dSR=R-R convection to 2-m (left) temperature and (right)
— t

— = dewpoint. (Hill et al. 2010)
dX, ~ OX OX,

MOTIVATION:
* Improved dynamical understanding of phenomena
* Targeted observations to improve forecasts



I 2-m Temperature I

700 UTC

[0 1700ute |

I 2-m Dewpoint Temperature |

I 850-hPa Temperature I

(i) 1700 UTC

(g)1300 UTC |

(o

Observation Targeting of t_850 at 1hr for dyn_UP_HELI_MAX16 at 07hr
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Hill et al. 2021

Mesoscale Application of ESA

* Hill et al. (2021) examine how ESA-
derived targeting fields (color

shaded) distribute relative to a severe
QLCS from VORTEX-SE 2017.

* Most significant sensitivity identified

for near-surface thermo of cold

pool

* Widely distributed areas of

sensitivity to surface thermo and 850
mb temperature in inflow sector



Application of ESA to 3 Mar 2020 Nashville, TN Event

REL_VORT_MAXO01 Top 10 Member 4 REL_VORT MAXO01 Top 10 Member 8 REL_VORT _MAXO01 Top 10 Member 23

REL_VORT MAXO01 Top 10 Member 34
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Downtown Nashville approx. 0600 UTC 3 Mar 2020

REL_VORT MAXO01 Top 10 Member 30 REL_VORT _MAXO1 Top 10 Member 60

* 80 HRRRE 1-km simulations of the event are being used for ESA
e (100 UTC HRRRE initialization

* Initial results focus on maximum Cy |\, for a large response box

Top 9 Members, Response: Max 1-hr {1 1, 0500-0600 UTC



Application of ESA to 3 Mar 2020 Nashville, TN Event

REL_VORT_MAXO01 Bot 10 Member 4 REL_VORT MAXO01 Bot 10 Member 8 REL_VORT MAXO01 Bot 10 Member 23

REL_VORT MAXO01 Bot 10 Member 12 REL_VORT MAXO01 Bot 10 Member 34
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Downtown Nashville approx. 0600 UTC 3 Mar 2020

REL_VORT MAXO1 Bot 10 Member 30 REL_VORT MAXO01 Bot 10 Member 60 REL_VORT MAXO01 Bot 10 Member 65

* 80 HRRRE 1-km simulations of the event are being used for ESA
e (100 UTC HRRRE initialization

* Initial results focus on maximum Cy |\, for a large response box

Bottom 9 Members, Response: Max 1-ht {1 1, 0500-0600 UTC



pstat of REL VORT _MAXO01 to SFCCAPE at state time 06_00_00 o =33 28 on=07.0y=0 ooz 0 023007

3N
t."-

0+ sens -sens

p




Activities Relevant to CIWRO Theme 2

Supercell (e.g., SVC) QLCS

* Ensemble Sensitivity Analysis

& / o > Sensitivity of CIRC1KM to TH2 at time 21:36:00
SN[ [ ) LT% ofefl o a
e SN 4 7 FRo% K o EICY

Mesoscale Storm-scale




Storm-scale ESA
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Storm-scale ESA
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Potential of ESA in WoFS

ESA previously utilized at large scales to study atmospheric dynamics in
hindsight
Recently proven successtul in a convective context
o TLV formation in simulated supercells (Hutson and Weiss 2022, in prep)
o Convective ensemble subsetting (Coleman and Ancell 2020)
WOoFS - unique opportunity to apply ESA in operational setting
o Ensemble-derived probabilistic forecasts key to initiatives like TWIEP
o Applicability of 36-member ensemble to uncover dynamical relationships

o Ensemble subsetting: identify most skillful members, inexpensively improving
forecast accuracy



Going Forward:
Avenues of CIWRO Collaboration

* Activities that contribute to a Weather Ready Nation:
* OAR Strategic Goal 3: Make forecasts and predictions better
* OAR Strategic Goal 4: Drive innovative science

* Physical understanding derived from idealized modeling and ESA
activities will benefit both goals

* ESA objectives, in particular, will inform the probabilistic hazard info
produced as part of the Tornado Warning Improvement and Extension

Program (TWIEP)

* Ultimately, we aim to help integrate ESA /subsetting methodology into
operations (e.g., AWIPS) (more from Brian Ancell this afternoon)

* Interested in pursuing (high-risk, high-reward?) opportunities available in
ESA-assisted storm-scale targeting



